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Abstract
The benefit of exploiting label dependence in
multi-label classification is known to be closely
dependent on the type of loss to be minimized.
In this paper, we show that the subsets of labels
that appear as irreducible factors in the factor-
ization of the conditional distribution of the la-
bel set given the input features play a pivotal role
for multi-label classification in the context of 0/1
loss minimization, as they divide the learning
task into simpler independent multi-class prob-
lems. We establish theoretical results to charac-
terize and identify these irreducible label factors
for any given probability distribution satisfying
the Composition property. The analysis lays the
foundation for generic multi-label classification
and optimal feature subset selection procedures
under this subclass of distributions. Our conclu-
sions are supported by carefully designed exper-
iments on synthetic and benchmark data.

1. Introduction
Multi-label Classification (MLC) is a challenging prob-
lem in many real-world application domains, where each
instance can be assigned simultaneously to multiple bi-
nary labels (Dembczynski et al., 2012; Read et al., 2009;
Madjarov et al., 2012; Kocev et al., 2007; Tsoumakas
et al., 2011). Formally, learning from multi-label exam-
ples amounts to finding a mapping from a space of features
to a space of labels. Given a multilabel training set D, the
goal of MLC is to find a function which is able to map any
unseen example to its proper set of labels. From a Bayesian
point of view, this problem amounts to modeling the con-
ditional joint distribution p(Y|X), where X is a random
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vector in Rd associated with the input space, Y a random
vector in {0, 1}n associated with the labels, and p the prob-
ability distribution defined over (X,Y).

The problem of modeling p(Y|X) may be tackled in vari-
ous ways (Luaces et al., 2012; Cherman et al., 2012; Read
et al., 2009; Blockeel et al., 1998; Kocev et al., 2007; Gasse
et al., 2014). Each of these approaches is supposed to cap-
ture - to some extent - the relationships between labels. An
important question remains: what shall we capture from
the statistical relationships between labels exactly to solve
the multi-label classification problem? The question re-
ceived increasing attention in the last years. So far, there
was a consensus among researchers that, to improve the
performance of MLC algorithms, label dependencies have
to be incorporated into the learning process (Tsoumakas &
Vlahavas, 2007; Guo & Gu, 2011; Zhang & Zhang, 2010;
Bielza et al., 2011). In a recent paper, however, Dembczyn-
ski et al. (2012) showed that the expected benefit of ex-
ploiting label dependence is tightly dependent on the type
of loss to be minimized and, most importantly, one cannot
expect the same MLC method to be optimal for different
types of losses at the same time (the reader is directed to
Dembczynski et al. (2012) and references therein for fur-
ther details about closed-form solution for risk-minimizing
prediction).

In this study we are mainly concerned with risk-minimizing
prediction for the subset 0/1 loss which is commonly ap-
plied as performance metric in MLC experimental stud-
ies. More specifically, we establish several theorems to
characterize: 1) the irreducible label factors (denoted as
ILFs) in the factorization of the conditional distribution of
the label set given the input features (i.e., minimal sub-
sets YLF ⊆ Y such that YLF ⊥⊥ Y \ YLF | X) under
the assumption that the probability distribution satisfies the
Composition property; and 2) the ILFs’ Markov bound-
aries (that are not necessarily unique under this subclass
of distributions). The latter problem is closely related to
the feature subset selection problem in the MLC context
(Gharroudi et al., 2014; Lee & Kim, 2013; Spolaôr et al.,
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2013) which has not yet been underpinned by theoretical
results to the best of our knowledge. We emphasize that
the present analysis conducted in this paper prepares the
ground for a generic class of correct procedures for solving
the MLC problem under the subset 0/1 loss, for any given
distribution satisfying the Composition property.

The rest of the paper is organized as follows: Section 2 dis-
cusses some key concepts used along the paper and state
some results that will support our analysis. Section 3 ad-
dresses the ILF decomposition and the feature selection
problem in the MLC context. Finally, we propose in sec-
tion 4 a straightforward instantiation of our ILF decompo-
sition procedure, called ILF-Compo, and present a number
of experimental studies, using both synthetic and bench-
mark data.

2. Preliminaries
We define next some key concepts used along the paper
and state some results that will support our analysis. In this
paper, upper-case letters in italics denote random variables
(e.g., X,Y ) and lower-case letters in italics denote their
values (e.g., x, y). Upper-case bold letters denote random
variable sets (e.g., X,Y,Z) and lower-case bold letters de-
note their values (e.g., x,y, z). We denote by X ⊥⊥ Y | Z
the conditional independence between X and Y given the
set of variables Z. To keep the notation uncluttered, we use
p(y | x) to denote p(Y = y | X = x). For consistency,
we assume that p(∅) = 1 and thus X ⊥⊥ ∅ | Z is always
true, where ∅ denotes the empty set of random variables.
We will assume the reader is familiar with the concepts of
d-separation in Bayesian networks (BNs) (Pearl, 1989).

2.1. Conditional independence properties

We now present some properties of conditional indepen-
dence. Let U denote a set of random variables, and p the
probability distribution defined over U. Let X ⊆ U, any
M ⊆ (U\X) such that X ⊥⊥ U\ (X∪M) |M is called a
Markov blanket of X in U. By extension, let V ⊆ U. Any
M ⊂ (V \X) such that X ⊥⊥ V \ (X ∪M) |M is called
a Markov blanket of X in V. It is worth noting that if M
is a Markov blanket of X in U, M∩V is not necessarily a
Markov blanket of X in V. Any minimal Markov blanket
of X (i.e. none of its proper subsets is a Markov blanket of
X) is called a Markov boundary (MB) of X. The following
two theorems are proven in Pearl (1989):
Theorem 2.1. Let X,Y,Z and W denote four mutually
disjoint subsets of U. Any probability distribution p satis-
fies the following four properties:

Symmetry X ⊥⊥ Y | Z⇒ Y ⊥⊥ X | Z
Decomposition X ⊥⊥ (Y ∪W) | Z⇒ X ⊥⊥ Y | Z
Weak Union X ⊥⊥ (Y ∪W) | Z⇒ X ⊥⊥ Y | (Z ∪W)

Contraction X ⊥⊥ Y | (Z ∪W) ∧X ⊥⊥W | Z
⇒ X ⊥⊥ (Y ∪W) | Z

If p is strictly positive, then p satisfies the previous four
properties plus the following property:

Intersection X ⊥⊥ Y | (Z ∪W) ∧X ⊥⊥W | (Z ∪Y)
⇒ X ⊥⊥ (Y ∪W) | Z

If p is faithful to a DAG G, then p satisfies the previous five
properties plus the following property:

Composition X ⊥⊥ Y | Z ∧X ⊥⊥W | Z
⇒ X ⊥⊥ (Y ∪W) | Z

Theorem 2.2. If p satisfies the Intersection property then
each X ⊆ U has a unique Markov boundary MBX.

It follows from Theorem 2.2 that the Markov boundaries
are unique when p is faithful to a DAG G. However,
the Theorem says nothing about distributions that do not
satisfy the Intersection property. In fact, many real-life
distributions violate the Intersection property and contain
non-unique Markov boundaries as discussed for instance
in Statnikov et al. (2013); Peña et al. (2007).

2.2. Minimization of multi-label loss functions

In the framework of MLC, one can consider a multitude of
loss functions. The risk of a classifier h is defined formally
as the expected loss over the joint distribution,

RL(h) = EX,Y[L(Y,h(X))]

where L(·) is a loss function on multi-label predictions.
The pointwise risk-minimizing model h?(x) is given by

h?(x) = argmin
y

EY|x[L(Y,y)]

In this study, we focus on a class of loss functions which
explicitly requires the estimation of the joint conditional
probability distribution p(Y | X). This class includes most
non label-wise decomposable loss functions as discussed in
Dembczynski et al. (2012) for instance. Modeling the en-
tire joint distribution has also the desirable advantage that
one can easily sample from the estimated joint distribution
to deliver an optimal prediction under any loss function. In
this paper, we will focus on the subset 0/1 loss, which gen-
eralizes the well-known 0/1 loss from the conventional to
the multi-label setting,

LS(Y,h(X)) = θ(Y − h(X))

where θ(x) = 1 if x 6= 0 and θ(x) = 0 otherwise. The
risk-minimizing prediction for subset 0/1 loss is given by
the mode of the distribution (Dembczynski et al., 2012),

h?(x) = argmax
y

p(y | x)
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Admittedly, this loss function may appear overly stringent,
especially in the case of many labels. Still, it is nowadays
routinely used as a performance metric in almost all MLC
studies. While the focus will be on the subset 0/1 loss in
this study, the estimation of the joint conditional probabil-
ity distribution is also required for other losses. Another ex-
ample of loss function for which the optimal prediction was
explicitly established is the instance-wise F-measure loss,
which essentially corresponds to the harmonic mean of pre-
cision and recall. Dembczynski et al. showed in (2011) that
the F-measure loss can be minimized in an efficient man-
ner using n2 + 1 parameters of the conditional joint dis-
tribution over labels: p(Y = 0 | x) and the n2 values of
pik = p(Yi = 1,

∑n
i=1 Yi = k | x) for i, k = 1 . . . , n.

Other losses, like the Jaccard distance, are suspected to re-
quire the estimation of the joint probability but are more
difficult to analyze. Note that risk-minimizing predictions
with label-wise decomposable losses (e.g. Hamming loss),
and also specific non label-wise decomposable losses like
the rank loss, can be solved on the basis of the marginal
distributions p(Yi|x) alone. Hence, for such loss functions
there is in principle no need for modeling conditional de-
pendence between the labels. This does not exclude the
possibility of first modeling the joint distribution and then
perform a proper marginalization procedure. Although not
pursued here, readers interested in exploring the connec-
tions between loss functions and optimal MLC predictions
are encouraged to consult Dembczynski et al. (2011) as
well as references therein.

2.3. Label factor decomposition

We shall now introduce the concept of label factor that will
play a pivotal role in the factorization of the conditional
distribution p(Y | X).

Definition 2.1. We say that YLF ⊆ Y is a label factor
iff YLF ⊥⊥ Y \ YLF | X. Additionally, YLF is said
irreducible if it is non-empty and has no other non-empty
label factor as proper subset.

The key idea behind label factors is the decomposition of
the conditional distribution of the labels into a product of
factors

p(Y | X) =

L∏
j=1

p(YLFj | X) =

L∏
j=1

p(YLFj |MLFj )

where {YLF1
, . . . ,YLFL

} is a partition of label factors and
MLFj

is a Markov blanket of YLFj
. From the above defi-

nition, we have YLFi
⊥⊥ YLFj

| X, ∀i 6= j. Under subset
0/1 loss, we seek a factorization into a product of minimal
factors in order to facilitate the estimation of the mode of
the conditional distribution, also called the most probable

explanation (MPE),

max
y

p(y | x) =
L∏

j=1

max
yLFj

p(yLFj | x)

=

L∏
j=1

max
yLFj

p(yLFj |mLFj )

This paper aims to obtain theoretical results for the charac-
terization of the irreducible label factors YLFj

in order to
be able to estimate the MPE more effectively.

3. Problem analysis
We shall assume throughout that X is the feature set, Y
the label set, U = X ∪Y and p a probability distribution
defined over U.

3.1. Label factor algebraic structure

We first show that label factors can be characterized as an
algebraic structure satisfying certain axioms. Let LF de-
note the set of all label factors defined over U, and ILF
the set of all irreducible label factors. It is easily shown
that {Y, ∅} ⊆ LF. More specifically, the collection of all
label factors in U can be ordered via subset inclusion to
obtain a lattice bounded by Y itself and the null set.
Theorem 3.1. ∀YLFi ,YLFj ∈ LF, then YLFi ∪YLFj ∈
LF and YLFi

∩YLFj
∈ LF. Moreover, the decomposition

of Y into irreducible label factors is unique.

Proof of Theorem 3.1. First, we prove that YLFi
∪YLFj

∈
LF . From the label factor assumption for YLFi and
YLFj we have YLFi ⊥⊥ Y \ YLFi | X and YLFj ⊥⊥
Y \YLFj

| X . Using the Weak Union property we obtain
that YLFi

⊥⊥ Y \ (YLFi
∪YLFj

) | X ∪ (YLFj
\YLFi

)
, and similarly with the Decomposition property we get
YLFj

\YLFi
⊥⊥ Y\(YLFi

∪YLFj
) | X . We may now ap-

ply the Contraction property to show that YLFi ∪YLFj ⊥⊥
Y\(YLFi∪YLFj ) | X . Therefore, YLFi∪YLFj is a label
factor by definition. Second, we prove that YLFi

∩YLFj
∈

LF . From the label factor assumption for YLFi
and

YLFj
we have YLFi

⊥⊥ Y \ YLFi
| X and YLFj

⊥⊥
Y \YLFj | X . Using the Weak Union property we obtain
YLFi ∩YLFj ⊥⊥ (Y \ (YLFi ∪YLFj ))∪ (YLFj \YLFi) |
X ∪ (YLFi

\ YLFj
) , and similarly with the Decomposi-

tion property we get YLFi
∩YLFj

⊥⊥ YLFi
\YLFj

| X
. We may now apply the Contraction property to show that
YLFi

∩ YLFj
⊥⊥ Y \ (YLFi

∩ YLFj
) | X . Therefore,

YLFi ∩ YLFj is a label factor by definition. Third, we
prove by contradiction that the decomposition of Y into
irreducible label factors is unique. Suppose it is not the
case, then there exists two distinct and overlapping irre-
ducible label factors YLFi

and YLFj
, i.e. YLFi

6= YLFj
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and YLFi
∩YLFj

6= ∅ . As YLFi
∩YLFj

is also a label
factor, then due to the irreducible label factor assumption
we have either YLFi = YLFj or YLFi ∩YLFj = ∅ which
shows the desired result.

It follows from Definition 2.1 and Theorem 3.1 that the set
of all irreducible label factors ILF is a partition of Y.

3.2. Irreducible label factor characterization

We shall now characterize the ILFs and their Markov
boundaries for probability distributions satisfying the Com-
position property.

Lemma 3.2. Suppose p supports the Composition prop-
erty. Let Yi and Yj denote two distinct labels in Y and de-
fine by YLFi

and YLFj
their respective irreducible label

factor, then we have {Yi} 6⊥⊥ {Yj} | X⇒ YLFi
= YLFj

.

Proof of Theorem 3.2. By contradiction, suppose YLFi
6=

YLFj
. Then, owing to Theorem 3.1 we have YLFi

∩
YLFj

= ∅ and thus Yj ∈ Y \YLFi
. From the label factor

assumption of YLFi , we also have that YLFi ⊥⊥ Y\YLFi |
X , which yields {Yi} ⊥⊥ {Yj} | X due to the Decomposi-
tion property. This concludes the proof.

The inverse here is clearly not true.

Example. Consider Y = {Y1, Y2, Y3} and X = ∅, with
Y1, Y2, Y3 three binary variables such that Y1 = Y2 + Y3
(+ denotes the OR operator). Then we have {Y1} 6⊥⊥
{Y2} | X and {Y1} 6⊥⊥ {Y3} | X, which implies that
ILF = {{Y1, Y2, Y3}}. Here Y2 and Y3 are in the same
irreducible label factor, yet we have {Y2} ⊥⊥ {Y3} | X.

Lemma 3.3. Suppose p supports the Composition prop-
erty. Consider YLF ∈ ILF, then for all nonempty proper
subset Z of YLF , we have Z 6⊥⊥ YLF \ Z | X.

Proof of Lemma 3.3. By contradiction, suppose such a Z
exists. Then we have Z ⊥⊥ YLF \ Z | X . From
the label factor assumption of YLF , we also have that
YLF ⊥⊥ Y \YLF | X , and therefore Z ⊥⊥ Y \YLF | X
due to the Decomposition property. We may now apply
the Composition property on these two statements to ob-
tain Z ⊥⊥ Y \Z | X which contradicts the irreducible label
factor assumption of YLF . This concludes the proof.

Theorem 3.4. Suppose p supports the Composition prop-
erty. Let G be an undirected graph whose nodes correspond
to the random variables in Y such that Yi and Yj are con-
nected in G if and only if {Yi} 6⊥⊥ {Yj} | X. Then Yi and
Yj are in same irreducible label factor if and only if a path
exists between Yi and Yj in G.

Proof of Theorem 3.4. If a path exists between Yi and Yj
in G then either Yi and Yj are directly connected, and

thus YLFi
= YLFj

due to Lemma 3.2, or there exists
a sequence of intermediate nodes Yk, Yk+1, . . . such that
YLFk

= YLFk+1
, and by induction YLFi = YLFj . We

may now prove the converse. Suppose Yi and Yj be-
long to the same irreducible label factor YLF , and define
{Wi,Wj} a partition of YLF such that Yi ∈ Wi and
Yj ∈ Wj . Consider W i

k a label in Wi. Using the Com-
position property, we have that either {W i

1} 6⊥⊥ Wj | X
or (Wi \ {W i

1}) 6⊥⊥ Wj | X. Let us apply the Compo-
sition property again on the second expression, we obtain
that {W i

2} 6⊥⊥Wj | X or (Wi \ {W i
1,W

i
2}) 6⊥⊥Wj | X.

If we proceed recursively, we will necessarily find a vari-
able W i

k ∈ Wi such that {W i
k} 6⊥⊥ Wj | X. In other

words, there exists at least one variable W i
k in Wi, such

that {W i
k} 6⊥⊥ Wj | X. Likewise, we can proceed along

the same line to exhibit a variable W j
l in Wj such that

{W i
k} 6⊥⊥ {W

j
l } | X. In other words, for every parti-

tion {Wi,Wj} of YLF , there exists at least one label
W i

k ∈ Wi and one label W j
l ∈ Wj such that {W i

k} 6⊥⊥
{W j

l } | (X ∪ Z). We proved that the irreducible label fac-
tor YLF containing {Yi, Yj} is a connected component in
G, and therefore Yi and Yj are connected in G.

Theorem 3.5. Suppose p supports the Composition prop-
erty. Then, the statement {Yi} ⊥⊥ {Yj} | X is strictly
equivalent to {Yi} ⊥⊥ {Yj} |Mi for every Markov blanket
Mi of Yi in X.

Proof of Theorem 3.5. We may rewrite {Yi} ⊥⊥ {Yj} | X
as {Yi} ⊥⊥ {Yj} | (X \Mi) ∪Mi for any Mi. From the
Markov blanket assumption for Mi, we also have {Yi} ⊥⊥
X \Mi |Mi . Using the Contraction property, we obtain
{Yi} ⊥⊥ {Yj}∪ (X \Mi) |Mi . Using the Decomposition
property, we obtain {Yi} ⊥⊥ {Yj} |Mi . Conversely, sup-
pose there exists a Markov blanket Mi such that {Yi} ⊥⊥
{Yj} |Mi . From the Markov blanket assumption, we also
have {Yi} ⊥⊥ X \Mi |Mi . Using the Composition prop-
erty, we obtain {Yi} ⊥⊥ {Yj} ∪ (X \Mi) |Mi . Using the
Weak Union, we obtain {Yi} ⊥⊥ {Yj} | X which proves
the equivalence.

Theorem 3.4 suggests a practical way to construct the graph
G provided that the Composition property holds. While the
Composition property assumption is less stringent than the
Faithfulness assumption, we provide an example where the
Composition property does not hold.

Example. Consider Y = {Y1, Y2, Y3} and X = ∅, with
Y1, Y2, Y3 three binary variables such that Y1 = Y2⊕Y3 (⊕
denotes the exclusive OR operator). Here p does not satisfy
the Composition property, and Theorem 3.4 does not apply
any more. We have {Y1} ⊥⊥ {Y2} | X, {Y1} ⊥⊥ {Y3} | X
and {Y2} ⊥⊥ {Y3} | X, and yet it is easily shown that
ILF = {{Y1, Y2, Y3}}.
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Notice that the search for ILFs relies on our ability to infer
Markov boundaries for individual labels, which by the way
may not be unique. This can in principle be achieved with
any off the shelf Markov boundary discovery algorithm that
is correct for distributions satisfying the Composition prop-
erty.

The second fundamental problem that we wish to address
involves finding a Markov boundary (or blanket) for a given
ILF that consists of several labels. The problem is closely
related to the optimal feature subset selection problem in
the multi-label context. Notice that multi-label feature sub-
set selection has recently received some attention (Ghar-
roudi et al., 2014; Lee & Kim, 2013; Spolaôr et al., 2013).
However, the empirical work has not yet been underpinned
by theoretical results to our knowledge. We address the fol-
lowing question: Can we form the joint Markov boundary
of a set of labels from the Markov boundaries of the sin-
gle labels {Yi}? Answering this question is not completely
trivial as we shall see.

Theorem 3.6. Suppose p satisfies the Composition prop-
erty. Let Y1, Y2, . . . and Yn denote non-empty disjoint
subsets of the label set Y and let Mi be a Markov boundary
of Yi in X. Then, M = M1∪. . .∪Mn is a Markov blanket
for Y1∪ . . .∪Yn in X. Moreover, if we remove recursively
from M anyX such that Y1∪. . .∪Yn ⊥⊥ {X}|(M\{X}),
we obtain a Markov boundary.

Proof of Theorem 3.6. We show first that the statement
holds for n = 2 and then conclude that it holds for all n
by induction. From the Markov blanket assumption for Y1

in X we have Y1 ⊥⊥ X \M1 | M1 . Using the Weak
Union property, we obtain that Y1 ⊥⊥ X \M | M . Sim-
ilarly we can derive Y2 ⊥⊥ X \ M | M . Combining
these two statements yields Y1 ∪ Y2 ⊥⊥ X \ M | M
due to the Composition property. This, along with the
fact that M1 ⊆ X, M2 ⊆ X, and hence M ⊆ X de-
fines M as a Markov blanket for Y1 ∪ Y2 in X. We
shall now prove that removing recursively from M any X
such that Yi ⊥⊥ {X}|(M \ {X}) yields a Markov bound-
ary. From the Markov blanket assumption we may write
Yi ⊥⊥ U\ (Yi∪M) | (M\{X})∪{X} . Using the Con-
traction property on these two statements then yields Yi ⊥⊥
{X}∪(U\(Yi∪M)) |M\{X} , which defines a Markov
blanket. We may now prove that the resulting Markov blan-
ket M is minimal. Let us suppose that it is not the case, i.e.
there exists a non-empty proper subset Z ⊂ M such that
Yi ⊥⊥ Z ∪ (U \ (Yi ∪M)) | M \ Z . From the Decom-
position property we may write Yi ⊥⊥ Z | M \ Z , and
then from the Weak Union property Yi ⊥⊥ {X} |M\{X}
, with {X} ⊂ M. Since we ensured that such an {X}
variable does not exist, we may conclude that Z = ∅, and
hence that M is minimal. This concludes the proof.

Algorithm 1 ILF-Compo
Input: D a data set, X the set of features, Y the set of
labels, (· ⊥⊥ · | ·) a statistical test of conditional indepen-
dence, MBalg , a Markov boundary learning algorithm,
MCalg, a multi-class classification algorithm.
Initialize ILF← ∅, Ydone ← ∅.
for all Yi ∈ Y do

Compute Mi of Yi in X using MBalg

while Y \Ydone 6= ∅ do
Select arbitrarily one label Yi from Y \Ydone

Initialize YLF ← {Yi}
while YLF \Ydone 6= ∅ do

Select arbitrarily one label Yj from YLF \Ydone

Add Yj to Ydone

for all Yk ∈ Y \ (Ydone ∪YLF ) do
if {Yj} 6⊥⊥ D{Yk} |Mj or {Yj} 6⊥⊥ D{Yk} |Mk

then
Add Yk to YLF

Add YLF to ILF
Solve the MLC problem using ILF and MCalg.

Notice that Theorem 3.6 holds for any set of labels and is
not restricted in particular to ILFs. It shows that an ILF’s
Markov boundary can easily be obtained by combining the
Markov boundaries of its individual labels, followed by a
backward step in order to remove recursively the redundant
features. Finding such a Markov boundary is useful to re-
duce the dimension of the input feature vector, thereby re-
ducing the computation burden for training the multi-class
classifiers.

The theoretical analysis conducted in this section lays the
foundation for generic procedures to solve the MLC prob-
lem under the subset 0/1 loss for any probability distri-
bution that satisfies the Composition property. Consider
the straightforward implementation called ILF-Compo de-
scribed in Algorithm 1. The procedure goes as follows: i)
learn the Markov boundary of every label in X, and test
for each pair of labels whether {Yi} ⊥⊥ {Yj} | Mi or
{Yi} ⊥⊥ {Yj} | Mj using any conditional independence
test. While the two expressions are mathematically equiv-
alent when the Composition holds, the tests may end up
with distinct decisions for numerical reasons because the
larger the size of the conditioning set, the less accurate are
the independence tests. Notice that many other heuristics,
more or less conservative, could be envisaged here. Then,
ii) build up an undirected graph G owing to Theorem 3.5,
and extract the ILFs owing to Theorem 3.4. Finally iii)
decompose the MLC problem into a series of independent
multi-class problems. So, ILF-Compo relies on a condi-
tional independence test, a Markov boundary learning al-
gorithm and a multi-class classification model.

The correctness of ILF-Compo relies on Theorem 3.5 and
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on the fact that the mode of the conditional distribution is
optimal for the subset 0/1 loss as discussed in the prelim-
inaries. While the procedure is mathematically sound, it
may not necessarily translate - of course - into a reduc-
tion of 0/1 loss in practical MLC scenarios for at least
one reasons. Indeed, the judgments on conditional inde-
pendence X ⊥⊥ Y | Z are made by performing fallible
statistical tests. Typically, they are based on either a G2

or a χ2 independence test when the data set is discrete and
a Fisher’s Z test when it is continuous in order to decide
on dependence or independence, that is, upon the rejection
or acceptance of the null hypothesis of conditional inde-
pendence. The main limitation of these tests is the rate of
convergence to their limiting distributions, which is partic-
ularly problematic when dealing with small sample sizes
or sparse contingency tables. The decision of accepting or
rejecting the null hypothesis depends on the freedom de-
gree which grows exponentially with the size of the condi-
tional set. For a practical comparison of conditional inde-
pendence tests (i.e. parametric, permutation and Shrinkage
tests), we defer to Scutari & Brogini (2012); Tsamardinos
& Borboudakis (2010).

4. Experiments
This section presents a number of experimental studies, us-
ing both synthetic and benchmark data. Our aim is not to
perform a through comparison of ILF-Compo against state-
of-the-art MLC algorithms but instead to corroborate our
theoretical findings by means of empirical evidence. We
first investigate on a toy problem the extent to which ILF-
Compo can solve the MLC problem when the degree of
label dependencies is varied. Then, we assess the ability
of ILF-Compo to reduce the subset 0/1 loss on real-world
multi-label data.

ILF-Compo was implemented in the R language, upon the
bnlearn package from (Scutari, 2010). There exists in the
literature a wealth of Markov boundary discovery algo-
rithms, whose correctness is usually demonstrated for prob-
ability distribution satisfying the faithfulness assumption
which is stronger than the Composition property. In our
experiments, we use the Incremental Association Markov
Boundary discovery algorithm (IAMB) proposed by Peña
et al. (2007) which was proved to be correct for distri-
butions satisfying the Composition property. Within both
IAMB and ILF-Compo, a semi-parametric Mutual Infor-
mation conditional independence tests was employed with
α = 10−3 and 100 permutations as discussed in Tsamardi-
nos & Borboudakis (2010). We used the Random Forest
classifier from Breiman (2001), implemented in the ran-
domForest R package from Liaw & Wiener (2002), as our
multi-class classification model.

4.1. Toy problem

X

Y1 Y2 Y3 Y4 Y5

Figure 1. BN structure of our toy problem. Dashed lines indicate
possibly missing edges.

Consider the toy problem depicted in Figure 4.1. The aim
is to illustrate the importance of the ILF decomposition to
minimize of the subset 0/1 loss. As ILF-Compo includes
BR and LP as special cases, we examine whether the ex-
traction of ILFs translates to improved subset 0/1 loss with
respect to these two standard algorithms. Consider a (sin-
gle) discrete variable X with 16 modalities, and 5 labels
Y1, Y2, . . . , Y5. As may be seen, each label Yi is dependent
on X , and possibly on the preceding label Yi−1 according
to the presence/absence of edges between labels as indi-
cated by short-dashed arrows in Figure 4.1. By removing
intentionally certain edges, we shall consider the following
distinct ILF decompositions:

• DAG 1: ILF = {{Y1}, {Y2}, {Y3}, {Y4}, {Y5}};
• DAG 2: ILF = {{Y1, Y2}, {Y3, Y4}, {Y5}};
• DAG 3: ILF = {{Y1, Y2, Y3}, {Y4, Y5}};
• DAG 4: ILF = {{Y1, Y2, Y3, Y4}, {Y5}};
• DAG 5: ILF = {{Y1, Y2, Y3, Y4, Y5}}.

For each of these BN structures, we generate a random
probability distribution by sampling uniformly the condi-
tional probability table of each node in the DAG from a unit
simplex as discussed in (Smith & Tromble, 2004). The pro-
cess is repeated 1000 times for each DAG, to obtain 5*1000
random probability distributions p. From each distribution,
we draw 7 training samples with respectively 50, 100, 200,
500, 1000, 2000 and 5000 instances and one testing sample
with 5000 instances. ILF-Compo, LP and BR are then run
on each training set using the same multi-class base learner,
and the subset 0/1 loss is assessed on the test set.

There are two things we want to evaluate: the quality of the
decomposition and the quality of the MLC. As we know the
ground truth of the ILF decomposition, it may be used as a
gold standard to assess the efficiency of the ILF decompo-
sition returned by ILF-Compo. To do so, we compute the
Rand index of each decomposition. The idea behind the
Rand index is to view the ILF decomposition as a series of
decisions, one for each of the N(N − 1)/2 pairs of labels.
Ideally, one would like to assign two labels to the same
ILF if and only if they are in the true ILF. The Rand index
measures the percentage of decisions that are correct. The
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result of this experiment are reported in Table 1 in terms of
Rand index and in Figure 2 in terms of mean global accu-
racy (defined as 1-0/1 loss) with respect to the size of the
training set.

In view of these curves, several conclusions may be drawn.
First, ILF-Compo (black curve) compares favorably to BR
(green curve) and LP (red curve) in all cases. Second,
LP is asymptotically optimal with the size of the training
set as expected. The asymptotic difference between LP
and BR is more pronounced as we move from DAG 1 to
DAG 5. In fact, the larger the conditional dependence be-
tween the labels, the more BR and LP diverge asymptoti-
cally. Nonetheless, it happens that BR outperforms LP on
small sample sizes (< 500), despite not being optimal, as
shown in Fig. 2b. The reason is that LP needs more obser-
vations to safely estimate p(Y | X) than BR to estimate
each p(Yi | X). Third, when the labels are all independent
to each other conditionally on X (see DAG 1), the ILFs are
reduced to singletons and ILF-Compo boils down to BR.
This not a surprise as BR is optimal in that case. At the op-
posite extreme, when the successive labels are pairwise de-
pendent and the unique ILF consists of all the labels, ILF-
Compo boils down to LP (DAG 5). Between these two
extreme cases (DAGs 2, 3, 4), ILF-Compo always outper-
forms BR and LP.

Overall, the results reported in Table 1 are in nice agree-
ment with our theoretical findings. It is worth noting,
though, that in the extreme case where almost all the la-
bels are conditionally dependent (e.g., DAG 4 and 5), ILF-
Compo can fail spectacularly to identify the correct ILFs
with small sample sizes (< 200). This is clearly due to the
lack of robustness of the statistical test employed with a
limited amount of samples. However, this has little impact
in terms of subset 0/1 loss for small sample sizes since BR,
LP and ILF-Compo perform poorly as well. As the sample
size increases, the quality of the decomposition becomes
significantly better.

Table 1. Rand index, averaged over 1000 runs, of the decomposi-
tion output by ILF-Compo versus the optimal decomposition on
the toy problem.
samp. size DAG 1 DAG 2 DAG 3 DAG 4 DAG 5

50 99.9±0.7 80.4±2.2 60.6±2.7 40.7±2.8 1.4± 3.8
100 99.6±2.0 85.0±6.5 69.0±7.8 49.9±8.0 13.7±10.1
200 99.3±2.7 94.5±6.4 83.5±8.1 65.3±8.3 34.4± 9.8
500 99.0±3.0 99.0±3.2 92.1±5.3 75.6±7.7 49.8± 9.4

1000 99.0±3.0 99.3±2.6 95.4±5.3 82.4±8.4 60.1±10.8
2000 99.1±2.9 99.0±3.0 98.0±4.1 88.8±7.2 70.0± 9.5
5000 99.2±2.7 98.9±3.2 99.2±2.8 94.0±5.7 79.0± 9.1

4.2. Benchmark on real-world data

We may now report on the experiments performed on 10
real-world multi-label data sets. These data sets come from

different problem domains including text, biology, and mu-
sic. They can be found on the Mulan1 repository, except for
image which comes from Zhou2 (Maron & Ratan, 1998).
Of course, we have no idea whether the Composition ax-
iom holds in these distributions, nor do we know the true
ILFs decomposition. To increase the difficulty of the task,
the data sets were also duplicated. The duplication was per-
formed in a way that maintains the probabilistic structure of
each set of variables while imposing their mutual indepen-
dency, by permutating the rows on the duplicated variables.
So by design, these augmented distributions have - at least -
two irreducible label factors. We only compared here ILF-
Compo and LP - as they are both intended to minimize the
0/1 loss - and no feature selection was performed to avoid
biasing the experimental results. When necessary, contin-
uous variables were binarized upon median value in order
to run our discrete independence test. A 5x2-fold cross-
validation was performed on each dataset, and predictions
were aggregated over the 10 test folds to estimate the subset
0/1 loss.

Table 2. Global accuracy on the original and the duplicated
benchmarks.

data set LP ILF-Compo

emotions 35.7± 2.5 35.5± 1.9
image 47.4± 0.7 47.7± 0.9
scene 73.8± 1.4 73.3± 1.1
yeast 26.4± 1.1 26.1± 1.6
slashdot 45.3± 1.3 42.4± 1.4
genbase 96.2± 1.2 96.6± 1.1
medical 68.9± 1.8 65.5± 1.4
enron 15.5± 0.5 16.0± 0.5
bibtex 22.0± 0.5 13.8± 0.8
corel5k 3.0± 0.3 2.9± 0.2

emotions2 4.8± 1.1 10.7± 1.7
image2 12.0± 1.0 21.0± 0.8
scene2 35.2± 1.3 50.3± 1.5
yeast2 2.3± 0.4 5.8± 0.5
slashdot2 8.9± 1.0 18.2± 0.7
genbase2 69.1± 3.8 93.1± 1.7
medical2 20.6± 2.2 27.8± 2.3
enron2 0.6± 0.3 2.5± 0.4
bibtex2 0.8± 0.1 0.5± 0.1
corel5k2 0.0± 0.0 0.0± 0.0

Table 2 reports the outputs of our algorithm in terms of
global accuracy of each method over the 10 data sets.
The difference between ILF-Compo and LP on the origi-

1http://mulan.sourceforge.net/datasets.
html

2http://lamda.nju.edu.cn/data_MIMLimage.
ashx

http://mulan.sourceforge.net/datasets.html
http://mulan.sourceforge.net/datasets.html
http://lamda.nju.edu.cn/data_MIMLimage.ashx
http://lamda.nju.edu.cn/data_MIMLimage.ashx
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Figure 2. Mean global accuracy of BR, LP and ILF-Compo on each DAG w.r.t. the training size in logarithmic scale. Results are
averaged over 1000 random distributions.

nal benchmark datasets was not significant according to a
Wilcoxon’s signed rank test at a confidence level of 0.01:
this is pretty much a dead heat between the 2 algorithms.
However, ILF-Compo did significantly better on the dupli-
cated benchmarks at p < 0.01.

Not shown here due to space restrictions, the graph struc-
tures obtained with ILF-Compo lend themselves natu-
rally to interpretation. Several graphs G are densely con-
nected, like Bibtex or Corel5K, while others are surpris-
ingly sparse, like Genebase and Medical. Finally, graph-
ical models have a number of advantages over alternative
methods. They clearly lay bare useful information about
the label dependencies which is crucial if one is interested
in gaining an understanding of underlying domain. This
is however well beyond the scope of this paper to delve
deeper into the graph interpretation.

5. Discussion & Conclusion
In this paper, the multi-label classification and optimal fea-
ture subset selection problems under the subset 0/1 loss
were formulated within a unified probabilistic framework
for a subclass of distributions satisfying the Composition
property. This framework paves the way for the devel-
opment of a broad class of correct MLC procedures opti-
mal under the subset 0/1 loss. A straightforward instan-

tiation was proposed and evaluated on synthetic and real-
world data. Significant improvements over LP were ob-
tained with label conditional distributions exhibiting sev-
eral irreducible factors.

Admittedly, the subset 0/1 loss may appear overly stringent
in practical applications. Finding theoretically correct al-
gorithms for other non label-wise decomposable loss func-
tions is still a great challenge. Nevertheless, we hope that
our paper will convince others about the importance of la-
bel factor decomposition and the possibility to work with
other loss functions.

Finally, as we usually have no idea whether the Composi-
tion axiom holds in the probability distribution underlying
the data at hand (it is violated for instance when complex
interactions exists between variables, such as the noisy par-
ity problem), future work should aim to relax this assump-
tion.
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